
1Software Configuration Management for Project Leaders - STC ’97

Michael W. Evans

Mr. Michael W. Evans is a recognized expert in software engineering, management and project
control, system and software methods, and the engineering process. He is President and founder of
Integrated Computer Engineering, Inc., a software engineering consulting firm specializing in software
engineering methods and processes. He has written four books published through John Wiley & Sons.
Recent efforts have been in support of the DoD Software Acquisition Best Practices Initiative, including
the Software Program Managers Network, a forum for software development professionals to share
lessons learned and a distribution vehicle for the Best Practices Initiative. He is a member of the Airlie
Software Council, a key element of the Initiative.

Michael W Evans Voice: 408-378-4700
Integrated Computer Engineering Inc Fax: 408-378-5395 142 N
Central Ave E-mail: candca@aol.com
Campbell CA 95008

Software Configuration Management for Project Leaders - STC ’972

Title: CenterZone Management™: The Relationship Between Risk Management and Configuration
Management in a Software Project

Presenters: Michael W. Evans and Shawn T. O’Rourke
Track: 10
Day: Tuesday, April 29
Keywords: CenterZone Management™, configuration management, risk management, chaos, process

improvement
Abstract: Software managers must apply two very different models simultaneously if their projects are to

succeed. On the one hand, they must make certain the project environment retains rigor and disci-
pline to ensure the product meets predefined requirements. On the other hand, they must allow
software engineers sufficient freedom to operate in an unstructured creative environment that
enhances productivity. Successful managers establish a balance between chaos and control. They
manage in the “CenterZone,” moving back and forth between chaos (freedom) and control (disci-
pline) to satisfy project needs.

CenterZone Management™:
The Relationship Between Risk Management and Configuration Management in a Software
Project

Much has been written over the last 25 years describing the “Software Crisis.” The crisis, first
identified at the 1968 NATO conference in Garmisch, Germany, has caused almost continuous govern-
ment, industry and academic concern about the future of the software industry.

In today’s Department of Defense (DoD) acquisition environment, software remains as much of a
concern as it was in 1968. Software problems continue to preclude the development or augmentation of
critical weapons and automated information systems.

There is no single estimate of the number of dollars invested in software process improvements, but
the figure is known to amount to many billions. Despite this vast expenditure on developing improve-
ments, software problems continue to plague the defense industry, and industry in general.

A recent report by the General Accounting Office (GAO) states that, although the federal govern-
ment spends billions of dollars annually on information technology, it is unclear what the government is
getting in return for its money. Better facts are needed about the government’s information technology
movements. Although information technology can boost organizational performance, the risks of failure
are ever present and must be effectively managed.1 To be successful, software-intensive projects must be
managed with a balance between a rigorous software development process and innovative management
techniques.

Software is a major cost, schedule, and performance driver of virtually all DoD weapons, com-
mand-and-control and information systems. Of the estimated $42 billion that the DoD spends annually
on the development and maintenance of its computer systems, just $7 billion—one sixth—is spent on
hardware. As of July 1995, the DoD had more than $256 billion under contract for software-intensive

1 GAO/T-AIMD-97-38.

3Software Configuration Management for Project Leaders - STC ’97

systems. When software problems delay the fielding of a major system, the costs can become enormous.

 Software problems are not unique to defense systems. Many large software projects now underway
will experience significant defects and problems, and may even be canceled after very substantial invest-
ments. Despite significant national expenditure in the area of software process improvement, have we
made corresponding improvements in the bottom-line metrics of cost, schedule, quality and user satis-
faction?

Cost and Schedule Performance

Problems in software development currently have a significant impact on industry in general. A
1995 study found that only 16 percent - one sixth - of software projects are expected to finish on time
and on budget, with only 9 percent of software projects in larger companies being completed on time
and within budget. Less than half—just 42 percent—of the originally proposed features and functions
will be present in projects completed by the largest U.S. organizations. Fifty-three percent of projects will
cost 190 percent—almost double—of their original estimates. Some 31 percent of software projects are
canceled before completion.2 An estimated $81 billion was spent on canceled software projects by U.S.
companies and government agencies in 1995. As large-scale software systems have become common-
place, the ability to manage these systems effectively has not kept pace. In the U.S., development costs
continue to rise while productivity declines. Virtually all nations with highly qualified software practitio-
ners have development costs between $125 and $250 per function point, except Japan at $1,600 and the
U.S. at $1,000.3

2 “Chaos,” Open Computing, March 1995.

3 Capers Jones, Applied Software Measurement: Assuring Productivity and Quality. McGraw-Hill,
1991, pp. 142, 145, 149, 167.

Software Configuration Management for Project Leaders - STC ’974

System development costs have been increasing exponentially with project size. Management of
system development has been found to be a key determinant of cost. If U.S. software managers do not
improve how they manage their large systems, they could see the nation’s software business move over-
seas.

Software Quality and User Satisfaction

The number of defects occurring in software delivered to the field is not a linear function of size—
defects increase exponentially. In a study by Capers Jones, he determined that defect potential is directly
related to the function point total of an application raised to the 1.2 power.4 As software projects become
larger, defects become a much more significant problem. As illustrated in Figure 1, rework (the cost of
finding and fixing a defect) approaches half the development cost in large software projects. Thus efforts
to identify and eliminate defects, and prevent their introduction, must be a major component of any
strategy to reduce the cost and risk of software development.

The GAO has identified poor software management and a lack of project oversight as critical and
common problem areas. An effective assessment process, to give early warnings of potential problems
before their full impact is felt, is essential to addressing the GAO’s concerns.

Improving Quality

As illustrated in Figure 2, consistently effective management practices, focused on defect reduction,
can significantly reduce the number of defects and their root causes. These management practices enable
defect identification, monitoring, reporting and closure. Defects can be minimized through process and
product standards enforced through integrated quality management practices.

 All managers want their programs to succeed, yet they face a myriad of challenges, both externally
and internally generated, that can impact overall success and force decision makers into choices between
undesirable alternatives. To achieve success, managers must cope with schedule, budget, resource and
technical restraints. In addition, varying program requirements complicate management plans. Unantici-
pated change in any of the aforementioned factors can impact the others, and force trade-offs. The trade-
off between a delivery date and a required capability is not an easy management decision. In some cases,
funding may expire and necessitate acceptance of a lesser system to avoid the possibility of cancellation.

Figure 1. Rework cost required for defect removal.

4 Ibid.

5Software Configuration Management for Project Leaders - STC ’97

In all cases, program management is in pursuit of success, yet when faced with the reality of the acquisi-
tion environment, the final outcome may not be the product and capabilities originally envisioned. As
illustrated in Figure 1, if we don’t manage towards defect removal we will continue to experience rework
costs on software projects which exceed development costs in the late stages.

Yet, despite problems, differences in process, and obvious inefficiencies and confusion surrounding
software standards, processes, methods and tools, we continue to develop and deploy remarkable prod-
ucts. Spurred by the DoD, the acquisition environment has changed and continues to change. An
example of this is the decreased reliance on military standards and the use of commercial standards and
commercial off-the-shelf (COTS) products. The restructuring of software acquisition management and
use of Integrated Product and Process Development and Integrated Product Teams continue to yield
results. There is new direction in performance-based specifications, and the oversight process is changing
from adversity to a streamlined teaming approach. The acquisition environment has improved and
continues to improve. The systems fielded attest to the skill and creativity of our people.

Common Characteristics of Complex Projects

Complex systems—and a softwara softwara softwara softwara software deve deve deve deve development prelopment prelopment prelopment prelopment project is a complex systemoject is a complex systemoject is a complex systemoject is a complex systemoject is a complex system— exhibit certain
common characteristics that could lead to unexpected development outcomes if the systems are not
properly managed. These characteristics cannot be explained by analyzing individual aspects of the
software project, but can only be addressed by understanding and addressing the relationships between
them. Software planning which breaks the project into its smallest parts, and then details the “how” of
each part, is useful in understanding the essential project components that must be present to enable
success and potential cost, resources and organizational considerations necessary to implement these in
the project environment. This low-level planning will not, however, address the risks associated with
implementing specific disciplines in the project. Understanding user-, system- and software-product
interfaces and the relationships, interactions and risks resulting from process interactions is critical if
risks are to be projected, managed and resolved.

Figure 2. Some causes of software defects.

Software Configuration Management for Project Leaders - STC ’976

In complex systems, the interesting and relevant project behavior that leads to risk occurrence arises
from the spontaneous interaction of the individual project activities and organizational components.
These interactions can’t be planned or directed; they just happen. They result from project reactions to
random external and internal events and occurrences. The project structure and environment must be
“self-organizing”; it must be capable of being dramatically restructured quickly without destroying the
flow of work or incurring even more risk. If the project is at either pole—either overly chaotic or
overmanaged—reacting to risk is often impossible. In software terms, chaos chaos chaos chaos chaos defines an environment
influenced by internal or external events that adversely affect a desired outcome.

Software project management needs to be flexible, exhibiting self-organizing behaviors that respond
easily to changing program needs, requirements, realities and constraints, without losing essential disci-
pline and control. They must recognize the maximum software project risks. These risks, whose occur-
rence will destroy a project or cause a product not to be fielded, occur at the juncture of two activities or
organizations, or the interface points between two products. They are harder to anticipate; by the time
they are recognized the impact has been experienced, and correcting or resolving problems resulting
from the occurrence often requires the involvement of more than one organization.

Let’s look at the implications that this has on software project success. On one hand you have the
government contracting and acquisition environment. In this environment, specific requirements and
basic technical parameters are defined, negotiated between acquirer and developer, and frozen as the
basis for the system acquisition and, ultimately, the basis for the software requirements. Inflexibility of
requirements, while essential in establishing agreed-to relationships between the user, the acquirer and
the developer, move the software project away from the point of balance towards the rigid, ponderous
state indicative of too many DoD software acquisition projects. Other forces tend to drive the DoD
software acquisition project further in this direction. The contracting environment fostered by the DoD
fixes specific agreements between acquirer and developer and, by intent, makes it difficult, often impos-
sible, to change them. Program management, engineering, assurance and reporting disciplines are often
ponderous, moving at glacial speed to resolve immediate, short-term software problems and issues.
Because of the number of organizations that may have to concur to proposed program changes, and the
complexity of the analysis required to allow this concurrence, critical changes to technical parameters
may take months, sometimes years, to be resolved. The rigidity of this environment, coupled with the
extensive delays associated with contract change, forces software projects into a fixed structure far from
the ideal “edge of chaos” environment critical to project success.

The other side of the equation is the pressure that customers and program and software-project
management place on the software engineering staff to be infinitely responsive to requested modifica-
tions to the project structure and product characteristics. This responsiveness is consistent with the
stereotype of software engineering. The view is that, as long as software engineers are provided a free and
unfettered environment and allowed to pursue technological innovation, significant change to the
software is possible at low risk. This, coupled with the need for software to be modified frequently to
resolve problems, the lack of funds or resources to establish and maintain a disciplined software project
environment, and the inconsistency between a rigorous and tightly controlled software environment and
the culture of the software project, tends to push the project away from the edge of chaos and into the
spiral of anarchy.

The Department of Defense has taken dramatic steps to attempt to deal with the issues which
impede acquisition of software. General changes in the acquisition environment are being enabled

7Software Configuration Management for Project Leaders - STC ’97

through acquisition reform—revisions to the Federal Acquisition Regulations (FAR) and rewrites of the
5000 and 8000 series; Acquisition Management Policies and Procedures. Dramatic changes such as the
Perry Memo, which replaces cumbersome DoD specs and standards with commercial practices and MIL-
STD 498, move the software standards away from the old waterfall life cycle model and closer to an
activity-based software standard more representative of how software is developed, delivered and sup-
ported. These initiatives do not, however, address the project need to dynamically establish and maintain
a meaningful balance between chaos and the rigid, structured environment incapable of rapid and
responsive change. The Best Practices Initiative has addressed this requirement.

This initiative has identified 9 principal and 43 supporting practices and a variety of tools that a
manager can use to monitor project effectiveness, risk and potential for success. The practices and tools
come from successful organizations which have used them to manage the chaos related to software
engineering and acquisition. These practices generally address interfaces and relationships between
specific project activities, the threads tying the project together. As such, they enable the project to
maintain the balance between chaos and over-control. They allow the manager to retain the “edge of
chaos” balance, providing early warning when the project is headed out of control. This allows the
manager to step in to manage the chaos, instead of having the chaos manage the project. This is known
as CenterZone Management.™

CenterZone Management™

The authors have made an interesting observation while conducting assessments of successful and
unsuccessful software projects for the past 10 years. Project managers who follow a rigorous, fixed
process that cannot adapt to the dynamic management, technical, and changing operational needs of
their customers have the same or greater risk of failure than managers who let projects drift into chaos.
Being flexible is as critical to the success of a software project as technical excellence.

As illustrated in Figure 3, software projects must apply two very different models simultaneously if
they are to succeed. On the one hand, the project must rigorously maintain baselines and agreements
between users, related software and systems, and customers. By necessity the software project environ-
ment must retain rigor and discipline, building a product that meets predefined requirements. On the
other end of the scale, software engineers must be provided sufficient freedom to implement software in
a free and unstructured environment, applying heuristic methods with skill and technical understanding.
If talented engineers are overmanaged, this will adversely affect the culture of a project and limit or
destroy productivity. Successful managers establish a balance between control and chaos, providing
sufficient discipline to assure product acceptability while drifting into controlled chaos, when necessary,

Figure 3. CenterZone Management™.

Software Configuration Management for Project Leaders - STC ’978

to enable the development of software. Effective managers manage in this “CenterZone,” moving back
and forth between chaos and control when necessary to satisfy project needs.

What are the effects of CenterZone Management™? Projects that maintain a balance between
chaos and overcontrol lower the risk of problems in the bottom-line metrics of cost, schedule, quality
and user satisfaction.

Dynamic Process Adaptation

Projects that successfully manage in the CenterZone employ the concept of “Dynamic Process
Adaptation.” In a software project environment, the ability to adapt is an essential characteristic of a
successful project. Successful software project managers balance the need for order and the imperative for
change. Their projects tend to locate themselves at “the edge of chaos.” The edge of chaos is where there
is enough innovation to keep a project functioning while retaining sufficient order and stability to keep
it from collapsing into anarchy. The successful software manager walks the narrow line between order
and discipline and pure chaos, finding the balance point.

Figure 4. (missing) The balancing of chaos and rigidity in software development process.

This balance point must be carefully maintained if the project is to succeed. If the organization
drifts too far into chaos, it risks falling into disorder. If this state is reached, the project becomes inca-
pable of accomplishing preplanned tasks, and even the simplest accomplishments become impossible. If
the project moves too far in the other direction away from the balance point, it becomes rigid, frozen,
and impossible to adapt to the reality that it faces. Either of the two conditions leads to failure and may
be a major cause of many of the software project failures plaguing the industry. Too much change can be
equally as destructive as too little. Only at the edge of chaos can software projects succeed.

Figure 5. (missing) The balancing of configuration management information and risk information in software
development process.

The two basic disciplines that enable software management in the CenterZone are Configuration
Management and Risk Management.

Configuration Management: An Essential for CenterZone Management™

As illustrated in Figure 6, Configuration Management (CM) allows the project to manage informa-
tion that is either shared by organizations within the project or which has been approved through a
quality gate (an inspection, walkthrough, audit or review) for use in the project. CM is a discipline
applying technical and administrative direction and surveillance to:

1. Identify and document the functional and physical characteristics of a configuration item.
2. Control changes to those characteristics.
3. Record and report change-processing and -implementation status.

Figure 6. (missing) CM provides dynamic control based on information approval.

When managing in the CenterZone, the least amount of CM control is on information not shared
or not yet approved. At this level of control, the software engineer manages content and change without
the need for approval or review. Any use by other individuals or organizations is at risk. While in this
state, the activity being conducted most closely matches the chaotic project state. At some point, either
the engineer or his or her task leader schedules a quality gate to evaluate a completed work product(s).
Three actions may be taken as a result of the gate evaluation:

1. The product is approved without change.

9Software Configuration Management for Project Leaders - STC ’97

2. The product is approved, although discrepancies are opened as problem reports.
3. The product fails the gate and the product is returned for rework.

Products that pass the gate are placed under internal control, first by the CM librarian staging the
product release in a CM-owned library partition, and then by moving the product into the controlled
project partition. Ownership of the information has moved from the engineer to the software manager.
The project, at least for the information transferred, has moved from potential chaos to the CenterZone
where sufficient controls are in place to ensure that:

1. Multiple individuals using the same information use a common, approved version, minimiz-
ing rework and potential for defects creeping back in after a quality gate completes.

2. Unauthorized changes are not made to products which would impact the users of the prod-
uct. Changes are not made until the impact is understood and agreed to.

3. Engineering changes are tasked based on need, the process is managed, and the products are
re-evaluated before the modification is incorporated into a release.

Information in the controlled project partition cannot be modified unless the change is authorized
by the Engineering Review Board (ERB). Examples of these changes are:

1. Changes to the preliminary specification(s) prior to the final product baseline.
2. Any change to products released during development testing or to a functional area during

development testing, unless the change affects the documentation representing the func-
tional or allocated baselines.

3. A change that does not affect a baseline but does impact internal project information, capa-
bilities or support.

The ERB maintains management control over the form, content and structure of shared informa-
tion. The ERB evaluates all proposed changes to software and data not yet accepted by the customer,
which have been moved into the project control partition of the software library. The board reviews and
evaluates all System Problem Reports (SPRs), authorizes the appropriate corrective action to be taken,
tracks status of all changes in progress, and closes the SPRs after the changes have been made. The board
is technical, screening all reported problems for impact and determining whether the correction is in the

Figure 7. Test flow versus project control.

Software Configuration Management for Project Leaders - STC ’9710

scope of the project.

The ERB is a technical, not management, board. Its primary purpose is to ensure that changes to
information not yet approved by the customer are in the scope of the project, are technically feasible and
required, and that all impacts are known. If the proposed change is “out of scope,” the SPR is sent to the
Change Control Board for action. Engineers assigned work by the ERB check out the data to change
from the project control partition of the library. The manager has reestablished project control, essential
to avoiding chaotic change by the engineering organization.

Information that has been approved for testing through the Test Readiness Review (TRR) quality
gate is moved from the project control partition to the testing partition. This area of the library is owned
by the test manager and contains all test-specific information, object builds of the software under test, all
test tools and data, all test scenarios, and the Version Description Documentation for all software under
test. No changes to this library partition can be made unless authorized by the ERB and accepted by the
test manager.

As illustrated in Figure 7, testing is a seamless structure comprised of eight distinct test levels. Level
1 and Level 2 testing are the responsibility of the software engineer developing or modifying the soft-
ware. Except for defining standards and practice requirements for this testing, the project manager pretty
much relies on the engineer to adequately test the software. The process is, however, checked at a quality
gate. When the gate successfully completes, the software is moved into the project control partition.
Integration (Level 3 tests) is performed by the test manager using software configurations built from the
project control partition into the test partition. Management control has moved into the CenterZone,
providing essential controls without overburdening the process with management overhead.

Any problems identified are documented on SPRs and submitted to the ERB for disposition. This
plan-execute-expose-report-correct process is followed until the software completes Level 6 test. To
minimize project risk, all software builds from Level 3 through Level 6 should use software from the
project control partition and be documented through a Version Description Document.

Software that has successfully completed Level 6 testing, or documentation that has been internally
reviewed and is approved for release to the customer through an internal audit, is moved into the pre-
release partition of the library. This partition is owned by the program manager. By design, change is
difficult due to the number of organizations impacted by problems, and the impact of changes. When
information moves into this partition, the project has moved out of the CenterZone and into a process
of excessive control. As reviews are completed and products accepted by the customer, information is
placed in formal baselines owned by the customer and residing in the customer partition of the library.
Information included in the functional, allocated or product baselines in the customer partition can only
be changed through a Change Control Board (CCB)-approved Engineering Change Proposal (ECP).

The CCB, unlike the ERB, addresses management issues rather than technical issues. Problems that
are observed and documented on an SPR are initially submitted to the ERB. The ERB screens them to
determine impact, scope and products affected. If the impact is considered major, if the SPR correction
is outside the scope of the project charter, or if the SPR affects information previously approved by the
customer and included in a jointly managed baseline, the SPR is converted into an ECP and dealt with
at a CCB meeting.

11Software Configuration Management for Project Leaders - STC ’97

This CCB process is high risk for the project for several reasons:

1. The CCB is slow since approval of ECPs requires coordination from many affected groups
and contractual actions.

2. Since it is a management board, understanding of the technical implications as the basis for
decisions may be difficult.

3. Without initial impacts being provided by the ERB, screening decisions may be based on a
programmatic, rather than a complete, understanding of the technical difficulty or cost of the
proposed change.

When managing change affecting customer-approved information or change that passes through
the CCB process without ERB screening, the project moves from the CenterZone into a high-risk area.

Risk Management: The Other Essential Discipline

How does risk management play in this process? It is difficult to comprehend why software manag-
ers can’t anticipate the catastrophes they experience, and take steps to avoid potential impacts. The
reason may be that, at the basic program level when scheduling the occurrence of events, projecting and
managing cost and resource expenditures and projecting progress are not areas that can easily be con-
trolled. Events regulate progress, and many of these events are outside software project management
control.

Risk management is a discipline which enables a software manager (and anyone else in the pro-
gram) to anticipate problems before they occur and thus minimize the impact on the project. In
CenterZone Management™, several risk management-related definitions are important:

1. Risk: A problem that has not yet occurred.
2. Problem: A negative impact resulting from occurrence of a risk.
3. Risk Transition: What happens to cause a risk to become a problem.
4. Risk Management: What is done to assess and control risks prior to transition.

When the project is in the CenterZone, information is in the controlled partition of the library and
is either under test or being evaluated through quality control, quality assurance or other form of analy-
sis. While there may be reported problems against releases under project control, or of individual compo-
nents comprising a release, the problems are known, the risks are identified and are usually being
tracked. Metrics are identified and monitored quantitatively to determine when the likelihood of occur-
rence of specific risks passes a predetermined threshold.

During each software development stage—i.e. requirements definition, design, coding, and test—
the controls for the associated products of these stages rest with the responsible engineer. At each stage
the engineer is responsible for achieving and meeting predetermined quality gates in order to transition
the product to the next development stage. Only when the product transitions to integration testing
does the individual engineer lose direct control of the project. The integration stage brings all engineers
together to move the product to the production stage through team resolution of issues. Management
attempts to overmanage or overcontrol this process will interfere with the creative process, and will
certainly increase risk and impact productivity.

When information and process are under the engineers’ personal control, the risks cannot be as well
managed, and it is harder to define and collect metric data. Engineers will interpret when requirements
are ambiguous, they will be optimistic when optimism is unwarranted, they will not always follow

Software Configuration Management for Project Leaders - STC ’9712

standardized processes or develop products which match project standards. Also, when problems are
assigned to engineers for analysis or correction through an ERB or CCB action, and information is
checked out for change, the project risk management process looks like the development model.

Risk Management Options

Every program manager has to deal with a multitude of unidentified risks that are posed and
waiting to interject themselves in the acquisition process. These risks can be as simple as an alarm-
requiring- reset risk, to a risk that would cause major program-funding reduction. A variety of risks in
some form or other will undoubtedly surface. The question is how the program manager controls risks to
ensure the program successfully achieves cost, schedule and performance requirements. The proactive
manager can apply four techniques to control acquisition risks: 1) AAAAAvvvvvoidoidoidoidoid, 2) ContainContainContainContainContain, 3) MMMMMitigate, itigate, itigate, itigate, itigate, 4)
EEEEEvvvvvade. ade. ade. ade. ade. All but evasion need cultural insertion to affect an institution focus on risk management.

For today’s program manager, a critical decision point in the acquisition process is how to balance
his attention on all aspects of the acquisition process while avoiding the inherent risks facing the pro-
gram. Risk management issues are not only the concern of the program manager but of his prime
contractor as well. How well the prime contractor and his supporting subcontractors interact to offer
their viewpoint of program risks to the program office is critical. The CenterZone is achieved with a
complete team.

The first approach—Risk ARisk ARisk ARisk ARisk Avvvvvoidance—oidance—oidance—oidance—oidance—is a true risk. Here the program manager purposely decides
a plan of action where he willingly positions the program where it may be susceptible to unexpected
risks, yet he takes no action to prevent them. The program manager is willing to absorb the risks in
terms of schedule, cost and performance, if they surface. In some cases the program manager believes the
potential occurrence cost is far less costly than putting in a plan to mitigate the potential risk area. This
decision could be costly in itself as risk/benefit analysis has been conducted with incomplete program
development support data. With at least 73 percent of software developers at SEI CMM maturity level
1, the reliability of supplied data could be questionable. Compounding this situation is a program office
which takes no action to avoid potential bad effects. Sometimes the program manager is faced with a
situation where there are no risk options available. A program manager working on an already tightly
compressed and financially constrained program is ill-advised to disregard understanding his risk options
and recoveries.

The program team that recognizes risks are inevitable will develop a strategy focusing on managing
risks for the betterment of the program acquisition. The best approach is to focus on Risk Contain-Risk Contain-Risk Contain-Risk Contain-Risk Contain-
mentmentmentmentment. An active risk management program maintains risk containment as a key element of successful
acquisition. The challenge that now faces the program team is determining the probability of each risk
occurring. Through an active risk identification process, the team calculates the probability of the risk
occurring, the cost of the occurrence if it does happen, and multiplies these factors to determine a risk
reserve. For example, if late delivery will cost $100,000 in penalties, and has a 30 percent chance of
occurrence, the risk reserve is $30,000. Cumulatively these risk reserves reflect the total budgetary
reserve required to be set aside to manage a risk’s occurrence. Unfortunately, no program can establish a
risk reserve of sufficient quantity to cover all risks.

Can a program team successfully manage a program with a limited amount of risk reserve? The
answer is no, as risks without sufficient reserves often can’t be mitigated successfully. Therefore it is
imperative that a program team set up a reasonable reserve which should include time, dollars, resources,

13Software Configuration Management for Project Leaders - STC ’97

or any other limited item to ensure the risk event or item remains off the critical path. The enterprising
program team will maintain a relative position in the CenterZone to balance out potential risks equally.

The successful team can avoid expending risk reserves if each risk is examined and a Risk Risk Risk Risk Risk MMMMMitiga-itiga-itiga-itiga-itiga-
tion tion tion tion tion plan is developed, monitored and implemented when necessary to avoid the risk. Each risk should
be re-examined periodically to ensure no changes have occurred in either the probability or cost of the
occurrence. Mitigating a risk early in the development process is less costly than when it has become an
established problem. The risk that becomes an established problem will consume more reserves than
previously. So what steps does a program team have to implement to be positioned successfully in the
CenterZone? To begin with, determine an alternate strategy or process in advance of a risk transition to a
problem in order to minimize the impact of the risk should it materialize. For example, set up a second
source for hardware in the event a hardware delivery is late. To avoid unacceptable impacts, non-negli-
gible risks must have mitigation strategy and reserve requirements identified. The monitoring approach
must be institutionalized throughout the program team. This monitoring requires unambiguous, quanti-
tative triggers to initiate the mitigation option. Again, a successful team is identified as operating in an
open environment that is responsive to changes. This environment requires balancing within the
CenterZone region. No one action can mitigate a risk, but a balancing among actions is required.

There are situations in every program where Risk ERisk ERisk ERisk ERisk Evvvvvasion asion asion asion asion is more the norm. The environment
tends to be reactive to events instead of proactive. In some situations a known risk will eventually transi-
tion into a problem; in others, the expected probability is so low that the risk is ignored. Each program
team has to determine what to do about each risk. In some cases the risk has little opportunity to impact
the development’s critical path, or the cost of occurrence is so low and is absorbable. In these cases the
program team basically ignores the potential of the risk becoming a problem. The program presses on
and hopes for the best. As you can see, evasion is cheap, requires no action and removes any option for
mitigating the risk. This is the option observed in most DoD programs. For commercial programs
supporting DoD programs, risk evasion is common unless the program sponsor provides adequate
funding for a more effective risk management option. The viewpoint here is that risk evasion is common
when no alternative risk management process exists.

The best approach to identifying and managing risk is through education and developing a RiskRiskRiskRiskRisk
MMMMManagement Panagement Panagement Panagement Panagement Prrrrrocessocessocessocessocess. A successful risk management process starts with establishing a risk management
program sponsored by the highest level of management. The key process steps are: 1) designating a risk
officer, 2) risk identification, 3) risk analyses and prioritization, 4) decriminalizing risk, 5) risk reporting,
6) establishing a risk reserve, 7) establishing a continuous, visible risk management program. Once the
program is established a metrics-based risk metrics-based risk metrics-based risk metrics-based risk metrics-based risk management management management management management approach should be implemented. This
applies a quantitative approach to assessing and controlling risk. A proactive and responsive program
team that implements a program-wide risk management program will certainly be found in the
CenterZone.

Summary

Today’s environment of budgetary constraints, rapidly retiring legacy systems and staff downsizing
are symptoms of the chaos facing the software engineering community, the acquisition force and ulti-
mately the customer. In a proactive management environment, chaos fuels the need for system engineer-
ing improvements. System improvements that rely on process improvement alone do not strengthen the
system engineering environment. The reactive management environment looks at process improvement
as the silver bullet. The environment is too dynamic to leave to one initiative or management approach.

Software Configuration Management for Project Leaders - STC ’9714

The key factor in managing the system engineering environment is to achieve the necessary balance in
the CenterZone. As we move forward into the 21st Century, achieving the critical balance in the
CenterZone is the key to achieving the maximum return on investment for every investment dollar. Are
you prepared to make the shift in thinking, managing and reacting in the CenterZone?

